mohamed.mohamed4

Dr. Mohammed Hammad Mohammed Fawey

Lecturer - Lecturer

Faculty of science

Address: Physics Department - Faculty of Science - Sohag University, Sohag, Egypt

4

Like

Mohammed H. Fawey is a doctor in Physics Department (Faculty of Science) in Solid-state Physics. He got his PhD degree from the Technical University of Darmstadt (TU Darmstadt), Germany in 2017. His main research interests are in the field of renewable energy (Fluoride Ion Batteries) and plasma applications.


Amorphous nickel nanophases inducing ferromagnetism in equiatomic Ni-Ti alloy
Ni50Ti50 nm-sized amorphous particles are prepared using inert-gas condensation followed by in situ compaction. Elemental segregation of Ni and Ti is observed in the consolidated nanostructured material Amorphous, nearly pure Nickel (96%) nanophases form within the amorphous Ni50Ti50 alloy. Combining atom probe tomography and scanning transmission electron microscopy with computer modelling, we explore the formation process of such amorphous nanophase ... Read more

2018-09-26 09:46:25 | Keywords Plasmon resonance, TEM,
Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variation
Alternative designs of plasmonic metamaterials for applications in solar energyharvesting devices are necessary due to pure noble metal-based nanostructures’ incompatibility with CMOS technology, limited thermal and chemical stability, and high losses in the visible spectrum. In the present study, we demonstrate the design of a material based on a multilayer architecture with systematically varying dielectric interlayer thicknesses that result in ... Read more

CuF2 as Reversible Cathode for Fluoride Ion Batteries
In the search for novel battery systems with high energy density and low cost, fluoride ion batteries have recently emerged as a further option to store electricity with very high volumetric energy densities. Among metal fluorides, CuF2 is an intriguing candidate for cathode materials due to its high specific capacity and high theoretical conversion potential. Here, the reversibility of CuF2 ... Read more

Conductivity Optimization of Tysonite-type La1-xBaxF3- x Solid Electrolytes for Advanced Fluoride Ion Battery
Lithium ion battery is currently the method of choice when it comes to local stationary storage of electrical energy. In the search for an alternative system, fluoride ion battery (FIB) emerges as a candidate due to its high theoretical capacity, and no lithium is needed for its operation. To improve the cycling performance and lower the working temperature of a ... Read more

2018-09-26 10:50:25 | Keywords TEM,
Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN
Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ... Read more