ibrabbas7

Prof. Dr. Ibrahim A. Abbas

Prof. - Department of Mathematics

Faculty of science

Address: Sohag University, Egypt.

193

Like
2019 | Keywords
Solutions of Some Difference Equations Systems and Periodicity
In this article, analysis and investigation have been conducted on the periodic nature as well as the type of the solutions of the subsequent schemes of rational difference equations Read more

Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material
In the present paper, the wave propagation on non-homogenous semiconductor through photo-thermal process has been studied by using the theory of coupled plasma and thermoelastic wave. Without neglecting the coupling between the plasma and thermoelastic wave that photo-generated through intensity modulated laser beam and tightly focused, a semiconducting isotropic elastic medium has non-homogeneity in thermal and elastic properties are considered. ... Read more

A DPL model of photothermal interaction in a semiconductor material
The generalized model for plasma, thermal, and elastic waves under dual phase lag model have been applied to determine the carrier density, the displacement, the temperature, and the stresses in a semiconductor medium. Using Laplace transform and the eigenvalue approach methodology, the solutions of all variables have been obtained analytically. A semiconducting material like as silicon was considered. The results ... Read more

Fractional order theory in a semiconductor medium photogenerated by a focused laser beam
In this paper, the fractional order theory has been applied for thermal, elastic and plasma waves to determine the carrier density, displacement, temperature and stress in a semiconductor medium. The thermal, elastic and plasma waves in a semi-infinite medium photogenerated by a focused laser beam were analyzed. The Laplace transformation is used to express the governing equation and solved analytically ... Read more

Analytical solution of fractional order photo-thermoelasticity in a non-homogenous semiconductor medium
The purpose of this paper is to study the wave propagation in a non-homogenous semiconducting medium through the photothermal process using the fractional order photo-thermoelastic without neglecting the coupling between the plasma and thermoelastic waves that photogenerated through traction free and loaded thermally by exponentially decaying pulse boundary heat flux. Read more

Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source
In this paper, the analytical solution of hyperbolic bio-heat equation under intense moving heat source is presented. The exact solution in the domain of Laplace's transform is obtained. The thermal damages to the tissues are evaluated by the extent of the denatured protein employing with the Arrhenius equation. The results indicate that the hyperbolic bio-heat model reduces to the parabolic ... Read more

Analytical Solutions of Plasma and Thermoelastic Waves Photogenerated by a Focused Laser Beam in a Semiconductor Material
In the present work, the coupled plasma theory (thermally and elasticity waves) was used to study the wave propagation of semiconducting sample through photothermal process. The coupled of the plasma, thermally, and elastic waves that photo-generated through intensity modulated laser beam and tightly focused has been considered to study an elastic homogeneous semiconducting medium with isotropic thermo-elastic properties. Laplace transformations ... Read more

A mode I crack problem for a thermoelastic fibre-reinforced anisotropic material using finite element method
In this article, the theory of generalized thermoelasticity with one relaxation time is used to investigate the thermoelastic fiber-reinforced anisotropic material with a finite linear crack. The crack boundary is due to a prescribed temperature and stress distribution. By using the finite element method, the numerical solutions of the components of displacement, temperature and the stress components have been obtained. ... Read more

A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole
The dual phase lag (DPL) heat transfer model is applied to study the photo-thermal interaction in an infinite semiconductor medium containing a spherical hole. The inner surface of the cavity was traction free and loaded thermally by pulse heat flux. By using the eigenvalue approach methodology and Laplace’s transform, the physical variable solutions are obtained analytically. The numerical computations for ... Read more

Photo-thermal-elastic interaction in an unbounded semiconducting medium with spherical cavity due to pulse heat flux
In this work, the photothermal waves in an unbounded semiconducting medium with spherical cavity are studied. This problem is solved using the theory of coupled plasma, thermal, and elastic wave. An unbounded material, elastic semiconductor containing a spherical cavity with isotropic and homogeneous thermal and elastic properties has been considered. The inner surface of the cavity is taken traction-free and ... Read more