In the work, a two-dimensional problem of a porous material is considered within the context of the fractional order generalized thermoelasticity theory with one relaxation time. The medium is assumed initially quiescent for a thermoelastic half space whose surface is traction free and has a constant heat flux. The normal mode analysis and eigenvalue approach techniques are used to solve the resulting non-dimensional coupled equations. The effect of the fractional order of the temperature, displacement components, the stress components, changes in volume fraction field and temperature distribution have been depicted graphically.