What do you know about ketone bodies??

Elsayed Abdelkreem

Assistant Lecturer
Department of Pediatrics,
Faculty of Medicine,
Sohag University.

Case presentation

- ➤ 9 months-old boy
- ➤ History of mild gastroenteritis of 24 hours duration .
- ➤ Presented to ER with <u>acidotic breathing</u>, <u>vomiting</u>, <u>dehydration</u>, and altered mental status.
- > Arterial blood gases showed severe metabolic acidosis:
 - pH 6.9 HCO₃ 5 mmol/L Base deficit -29 pCO₂ 18 mmHg
- ➤ Urinary ketones ++++

What do you think??

Case presentation

- Blood sugar 70 mg/dl
- Creatinine 0.9 mg/dl
- > Electrolytes, liver functions, other routine labs: unremarkable

The child developed recurrent similar episodes of nondiabetic ketoacidosis following minor infections

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

- **➤** What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

What are the ketone bodies?

- ➤ Acetoacetate (AcAc), 3-hydroxybutyrate

 (3HB) and acetone are called as ketones.
- Acetone is produced by decarboxylation from acetoacetate.
- Acetoacetate and 3-hydroxybutyrate are short chain carboxylic acids, so accumulation of them causes ketoacidosis.

- ➤ What are the ketone bodies?
- > Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

Why they are important?

- > Ketone bodies are important *energy* sources.
- They can be utilized by most tissues except the liver.

for the brain when glucose supply is low.

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

Production and utilization

- ketone body <u>synthesis</u> starts in the *liver* by the β-oxidation of free fatty acids (FFA), supplied from adipose tissues, to produce acetyl-CoA and acetoacetyl-CoA.
- ➤ This is followed by several enzymatic steps to produce ketone bodies (Acetoacetate and 3-hydroxybutyrate) that are excreted into blood.
- ➤ Ketone bodies can then be <u>utilized</u> by extrahepatic tissues for energy production through several enzymatic steps.

Production and utilization

Control of ketone body synthesis

- > Ketogenic triggers includes fasting, febrile illnesses, vomiting and diarrhea.
- ➤ Glucagon and catecholamines induce free fatty acids mobilization from adipose tissue and fatty acid oxidation and ketogenesis.
- > *Insulin* suppresses these steps and inhibits ketogenesis.

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

Ketosis and ketoacidosis

- ➤ Normal Blood Ketone level in children depends on time of last feeding; it can range from 0.05 mmol/L (postprndial) up to 6 mmol/L (after 24-hour fasting).
- > Ketosis means a blood ketone level is more than 0.2 mmol/L.
- ► Ketoacidosis means a blood ketone level ≥7 mmol/L in association with metabolic acidosis (pH <7.3, HCO $_3$ ⁻ < 15 mmol/L).

Ketosis and ketoacidosis

Causes

- **Endocrinal:** Diabetic ketoacidosis, Addison disease.
- > Physiological response to stress, ketotic hypoglycemia.
- > Intoxications: Salicylates
- > Inborn errors of metabolism
 - Organic acidemias
 - Glucose and glycogen (glycogen synthase deficiency)
 - Disorders in ketone body utilizations
 - **❖** Beta-ketothiolase (T2) deficiency
 - ❖ Succinyl-CoA:3-oxoacid CoA transferase (SCOT) deficiency

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- > Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

Hypoketosis

Causes

- > Hyperinsulinism.
- > Fatty acid oxidation defects.
- > Disorders in ketone body synthesis.

Nonketotic hypoglycemia is a serious condition because body organs (particularly the brain) lack both energy sources (blood glucose and ketones).

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- > Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- > Beta-ketothiolase deficiency
- ➤ Diagnostic clues and case scenarios

Beta-ketothiolase deficiency

- An inherited metabolic disease of isoleucine catabolism and ketone body utilization.
- ➤ Clinically characterized by intermittent episodes of ketoacidosis usually between 6 24 months of age, following fasting or febrile disease.
- ➤ About 100 patients have been reported worldwide.

Beta-ketothiolase deficiency

- Research collaboration has started in 2015 between the Departments of Pediatrics at Sohag University (Egypt) and Gifu University (Japan).
- ➤ Between Feb 2015 and Jul 2017, we identified 23 new patients with beta-ketothiolase deficiency, including the first two Egyptian patients confirmed on the molecular level.

Beta-ketothiolase deficiency

Results of our research work.

- > International conferences.
- ➤ International peer reviewed Journals.

- ➤ What are the ketone bodies?
- ➤ Why they are important?
- > Production and utilization.
- Disorders
 - Excess ketones (ketosis and ketoacidosis)
 - Lack of ketones (hypoketosis)
- ➤ Beta-ketothiolase deficiency
- > Diagnostic clues and case scenarios

Useful diagnostic clues for ketone body disorders

- Blood glucose
- ❖ Total ketone bodies (TKB)
- ❖ Free fatty acids (FFA)
- ❖ Insulin.
- > Consider clinical situation (like fasting).

Useful diagnostic clues for ketone body disorders

Useful equations

FFA/TKB (in mmol/dl; during early fasting)

- < 0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

TKB×**blood glucose** (in mmol/dl; if hypoglycemia)

>14 defect in ketone body utilization

Case scenario (1)

3-yr-old child with ketosis (TKB 7.0 mmol/L)

- After a 10-hr fast
- Glucose 5 mmol/L
- FFA 1.5 mmol/L

(FFA/TKB 0.21)

Probable diagnosis??

FFA/TKB (in mmol/dl; during early fasting)

- < 0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

Defect in Ketone body utilization

Case scenario (2)

3-yr-old child with ketosis (TKB 7.0 mmol/L)

- After a 24-hr fast
- Glucose 2.6 mmol/L
- FFA 2.8 mmol/L

(FFA/TKB 0.4)

Probable diagnosis??

FFA/TKB (in mmol/dl; during early fasting)

- < 0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

Physiological Response to a long fast

Case scenario (3)

A hypoglycemic 2-yr-old child (Glucose 1.4 mmol/L)

- TKB 11 mmol/L
- FFA 3.0 mmol/L
 - FFA/TKB=0.27
 - TKB × blood glucose=15.4
- Probable diagnosis??

FFA/TKB

- <0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

TKB×blood glucose

>14 defect in ketone body utilization

Defect in Ketone body utilization

Case scenario (4)

A hypoglycemic 2-yr-old child (Glucose 1.4 mmol/L)

- TKB 7.0 mmol/L
- FFA 3.0 mmol/L

FFA/TKB=0.43

TKB × blood glucose=10

Probable diagnosis??

FFA/TKB

- <0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

TKB×blood glucose

>14 defect in ketone body utilization

Ketotic hypoglycemia

Case scenario (5)

A hypoglycemic 2-yr-old child (Glucose 1.4 mmol/L)

- TKB 0.3 mmol/L
- FFA 3.0 mmol/L

FFA/TKB=10

Probable diagnosis??

FFA/TKB

- <0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

Defect in Ketogenesis/fatty acid oxidation

Case scenario (6)

A hypoglycemic 2-yr-old child (Glucose 1.4 mmol/L)

- TKB 0.3 mmol/L
- FFA 0.4 mmol/L

FFA/TKB=1.33

Probable diagnosis??

FFA/TKB

- <0.3 defect in ketone body utilization
- >2.5 defect in ketogenesis/fatty acid oxidation

Hyperinsulinism

Thank You