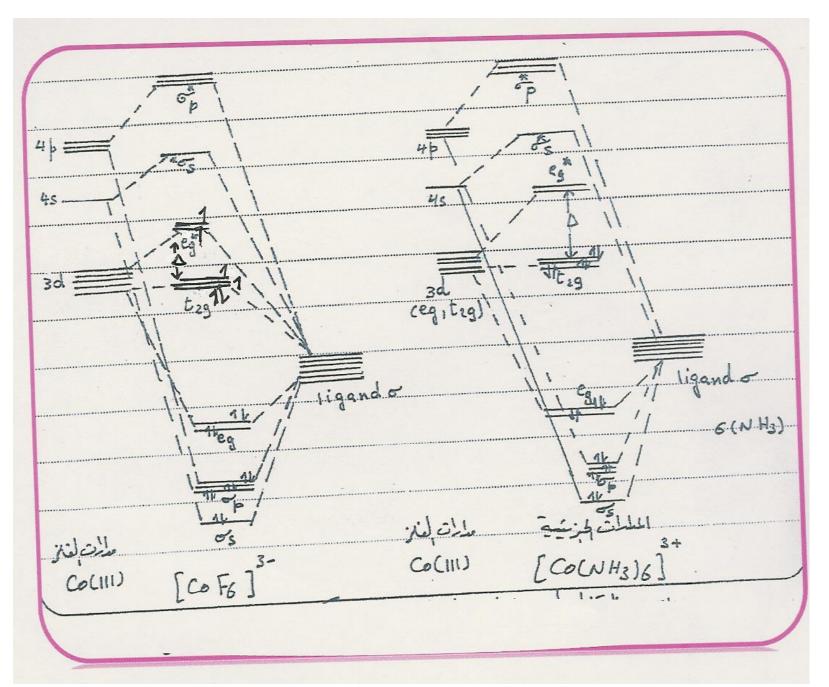
MOLECULAR ORBITAL THEORY (MOT)

EXTENSION OF (CFT) TO ALLOW FOR COVALENCY

- CFT is based on pure electrostatic attraction and explains:
- 1-shape
- 2- spectra
- 3- colour
- 4- magnetic properties

- Disadvantage:
- The theory ignores covalent bonding as in:
- *compounds in the zero oxidation state have no electrostatic attraction between metal and ligand bonding must be covalent.
- *NMR and ESR show some unpaired electron density on the ligands, suggests sharing of electrons, i,e. covalency
- *Order of ligands in spectrochemical series cannot be explained on electrostatic ground only.

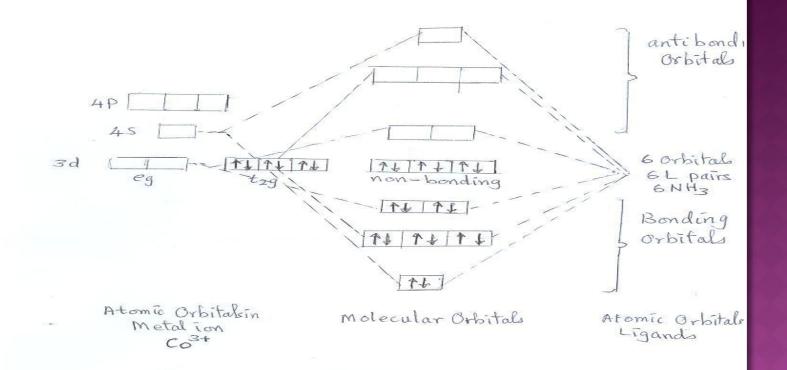
CORRECTION FACTORS APPLIED TO CFT

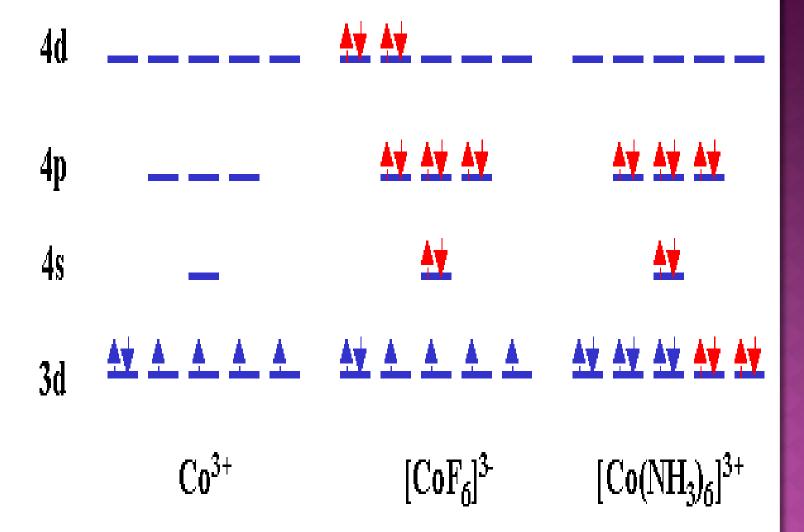

- **Two factors were applied to allow for covalency arising from the delocalisation of
- (d electron) from the metal onto the ligand:
- 1- Factor B, (Racah parameter) is introduced for interpretation of spctra.
- If B is reduced below the value of the free metal ion, the delectrons are delocalized on the ligand.
- 2- Factor K, is introduced for interprtation of magnetic measurements

MOT INCORPORATES COVALENT BONDING

- Molecular orbital theory uses a linear combination of orbitals (LCAO) to represent molecular orbitals involving the whole molecule.
- These are often divided into:
- 1- bonding orbitals.
- 2- anti-bonding orbitals.
- 3- non-bonding orbitals

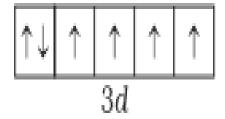
- •A molecular orbital is merely a Schrödinger orbital that includes several, but often only two nuclei.
- If this orbital is of the type in which the electron(s) in the orbital have a higher probability of being between nuclei than elsewhere, the orbital will be a bonding orbital, and will tend to hold the nuclei together.

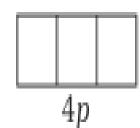

- Example: $[Co(NH_3)_6]^{+3}$
- Electonic configuration of Co³⁺ is [Ar]3d⁶
- * The atomic orbitals used to make molecular orbitals are,(two) 3d,(one)4s, (three)4p from(cobalt) and (six)2p from NH₃ ligands. Therefore:
- *12 atomic orbitals combine to give 12 molecular orbitals (6 bonding molecular orbitals and 6 antibonding molecular orbitals)

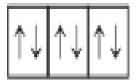


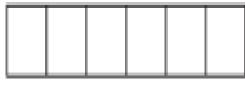
- * The 12 electrons from the 6 ligands are placed
- in the 6 bonding MO.
- * CO^{3+} has 6 electrons (3 pairs) in \mathbf{t}_{2g} orbitals, which form non-bonding MO.

*The antibonding molecular orbitals are all Empty.

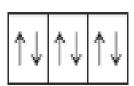

The arrangement is shown in Figures below:

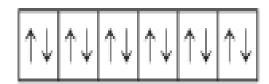



Orbitals of Co3+ion



4s

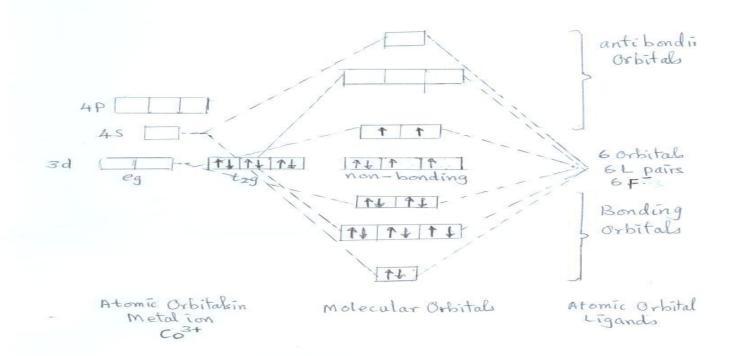

d²sp³ hybridised orbitals of Co³⁺



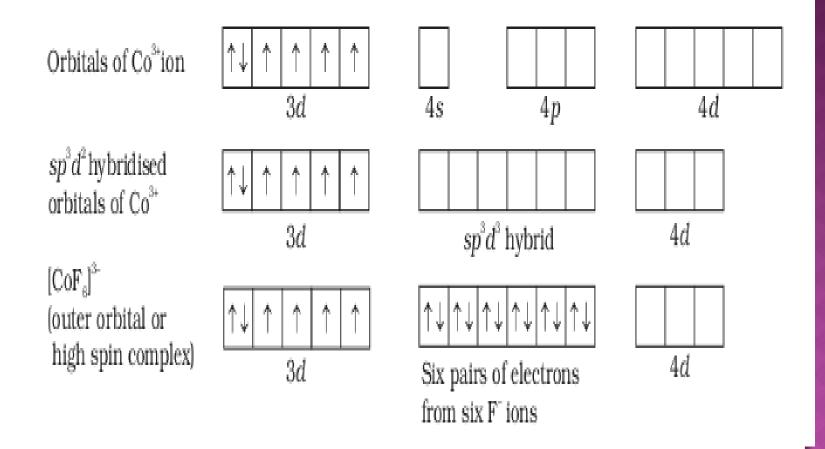
 d^2sp^3 hybrid

[Co(NH₃)₆]³⁺ (inner orbital or low spin complex)

Six pairs of electrons from six NH₃ molecules


PREDICTION OF A COMPLEX

- 1- The complex is diamagnetic as all electrons are paired
- 2- The complex should be coloured since promotion of electrons from the non-bonding t_{2g} MO to the antibonding e_g MO is possible.
- 3- In this example, the energy jump Δ_0 is larger than the pairing energy i,e. $\Delta_0 > P$


MOLECULAR ORBITALS DIAGRAM

- Example: [CoF₆]³⁻
- A simlar molecular orbitals diagram can be drawn for this complex, but the energy of the 2p orbital on F⁻ are lower than on N in NH₃.
- * This alter the spacing of the molecular orbitals energy levels.
- * In this example, the energy jump Δ_0 is smaller than the pairing energy i,e. Δ_0 <P

- * The non-bonding d electrons do not pair up as in the complex [Co(NH₃)₆]³⁺, thus:
- •
- [CoF₆]³⁻ has 4 unpaired electrons and is
- a high-spin complex.
- is a low-spin complex.
- **Therefore the molecular orbital theory explains the spectra and magnetic properties of complexe

DISADVANTAGES OF A MOT

• The MOT is based on wave mechanics, therefore:

• 1- Bond energies, and

2- Enthalpies of formation

• CANNOT BE CALCULATED DIRECTLY

ADVANTAGES OF MOT

- 1- Considered covalency
- \odot 2-Considered π bonding in addition to σ bonding.
- π bonding helps to explain:
- 1- the position of some ligands in the spectrochemical series.
- 2- how metals in low oxidation state [Ni(CO)₄]can form complexes (cannot be explained using CFT)

IN BONDING HELPS TO EXPLAIN:

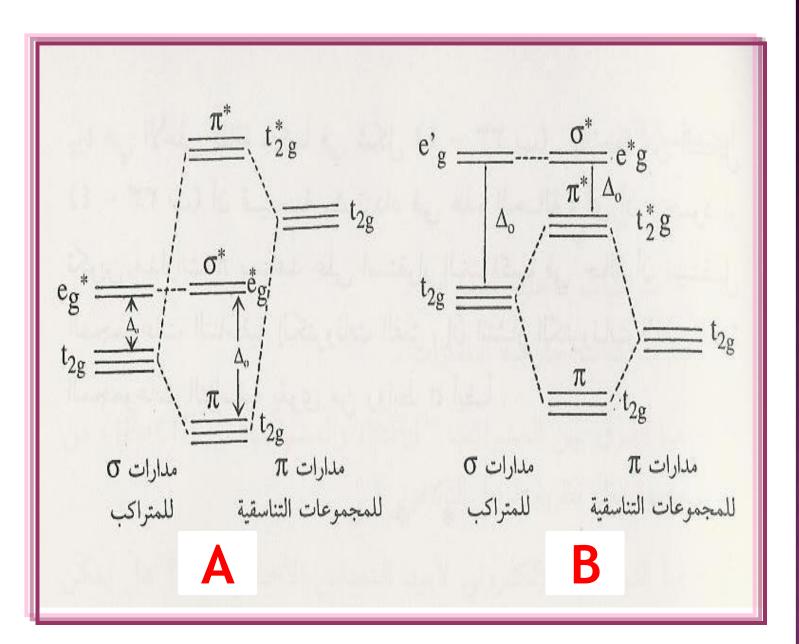
 1- how metals in low oxidation state [Ni(CO)₄]can form complexes (cannot be explained using CFT)

•

It is impossible to explain any attractive forces using the CFT, because of the lack of charge on the metal.

IN BONDING HELPS TO EXPLAIN:

- 2- the position of some ligands in the spectrochemical series.
- There are two cases:
- \odot a- The ligand acts as π acceptor, accepts electrons from the metal.
- Examples: CN⁻, CO, NO⁺
- The ligand has empty π orbitals with the correct symmetry to overlap with the metal t_{2g} orbitals to form π bond, called (back bonding). The energy of the ligand orbitals is higer than the energy of metal orbitals, hence(strong field ligand)


IN BONDING HELPS TO EXPLAIN:

- b- The ligand acts as π donor, transfer charge to the metal in π interaction as well as σ interaction.
- Such a bond occurs in oxoions of metals in high oxidation state (is short of electrons)
- Examples: $[MnO_4]^-$, $[CrO_4]^{2-}$

•

 The energy of the ligand orbitals is lower than the energy of metal orbitals, hence (weak field ligand)

(

