

Iron Nitrosyl compounds

Nitric Oxide I

- Nitric oxide (NO) is a colorless gas that is thermodynamically unstable ($\Delta H_f = 90.2 \text{ kJ/mol}$).
- Due its odd number of electrons, the compound is paramagnetic. The unpaired electron is located in a π^* -orbital (HOMO orbital shown on the right)
- The molecule possesses a small dipole moment ($\mu=0.158 \text{ D}$) in which the nitrogen atom possesses a partial negative charge (60% spin density on nitrogen based on EPR).
- The N-O bond length (115 pm) corresponds with a bond order of about 2.5 (double bond: 118 pm, triple bond: 106 pm).

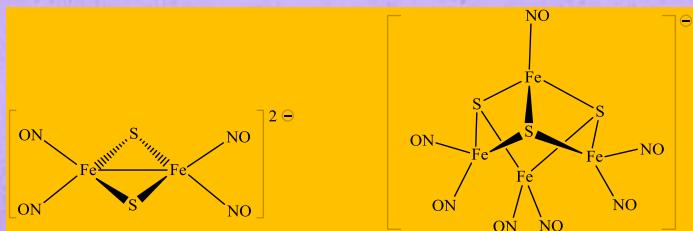
Nitric Oxide II

- Nitric oxide is a by-product of combustion of substances in the air (i.e., car engines, fossil fuel power plants). In both cases, it is quickly oxidized to form nitrogen dioxide, which is removed using a catalytic converter.
- Nitric oxide is also produced naturally during the electrical discharge of lightning. However, the direct reaction of nitrogen with oxygen requires temperatures in excess of 2000 °C, which is not practical for a large-scale synthesis.
- Industrially, the oxidation of ammonia at 850 °C with platinum as catalyst leads to the formation of nitric oxide.

- Nitric oxide can be oxidized to form the nitrosonium ion (NO^+) or be reduced to form a nitroside ion (NO^-). The nitrosonium ion appears as the cation in nitrosyl salts NO^+X^- ($\text{X}=\text{BF}_4^-$, ClO_4^- , AsF_6^- , SbCl_6^- , OsF_6^- , HSO_4^- , PtCl_6^{2-}).
- Nitrosyl chloride is formed in a mixture of hydrochloric acid and nitric acid also known as *aqua regia*.

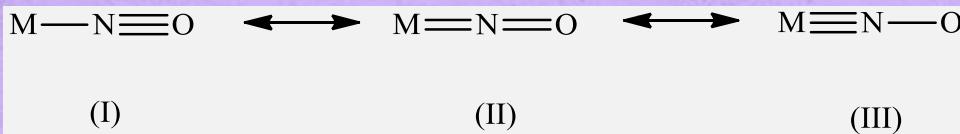
Metal Nitrosyl Complexes I

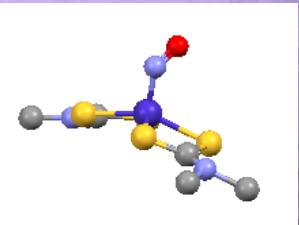
- Metal nitrosyl complexes, have gained significant interest in the past twenty years because of the important role nitric oxide displays as signaling molecule in biological systems.
- Louis Ignarro, a professor in the pharmacology department at UCLA, received the Noble Prize in Physiology and Medicine in 1998 for his discovery about the signaling properties of nitric oxide.
- Iron dithiocarbamates are used as model compounds for NO spin trapping
- The first nitrosyl complex was discovered in 1790 by J. Priestley ($[\text{Fe}(\text{H}_2\text{O})_5(\text{NO})]^{2+}$). This complex is also formed in the qualitative test for nitrate with ferrous sulfate and sulfuric acid (“brown ring test”).


Metal Nitrosyl Complexes II

- The second compound, an iron cyano complex ($[\text{Fe}(\text{CN})_5(\text{NO})]^{2-}$), was described about 60 years later by K. L. Playfair.
 - The dark-red sodium nitroprusside $\text{Na}_2[\text{Fe}(\text{CN})_5(\text{NO})]*2\text{H}_2\text{O}$ is obtained from potassium ferrocyanide and concentrated nitric acid
 - It is a potent vasodilator (SNP, *Nitropress*).
 - This compound is also used in *Simon's test* in the detection of methamphetamine (blue) and as reagent to detect sulfide ions as $[\text{Fe}(\text{CN})_5(\text{NOS})]^{4-}$, which is purple.
- Roussin's salts (red: $\text{K}_2[\text{Fe}_2\text{S}_2(\text{NO})_4]$, black: $\text{Na}[\text{Fe}_4\text{S}_3(\text{NO})_7]$) are both iron sulfur nitrosyl complexes that were discovered in 1858.
- The esters of the Roussin's Red salt are being investigated as nitric oxide donors because photolysis of the compounds causes the release of NO.

Metal Nitrosyl Complexes III


- The nitric oxide donated by Roussin's Black salt has proven to be toxic to some melanoma cancer cells.
- The same salt demonstrates antibacterial activity in some food processing applications as well.
- The structure of the red salt displays an edge-shared bitetrahedron: four nitrosyl ligands are terminal and two sulfide ligands are located in the bridge.
- The black salt forms an incomplete cubane structure, which is missing one corner (4 Fe and 3 S).


Metal Nitrosyl Complexes IV

- The nitrosyl ligand can act as a one-electron or a three-electron donor.
- The nitrosyl cation ($\text{:N}\equiv\text{O}^+ \text{:}$) can use its lone pair on the nitrogen atom to form a bond to the metal atom like its isoelectronic counterparts the carbonyl ($\text{:C}\equiv\text{O} \text{:}$) and the cyanide ($\text{:C}\equiv\text{N}^-\text{:}$).
- As carbonyl ligands, various degrees of π -back bonding are observed (NO^+ is a stronger π -acceptor than CO):

Metal Nitrosyl Complexes V

- Increasing strength of the π -back bond strengthens the M-N bond and weakens the N-O bond.
- In extreme cases, both bonds can be characterized as double bonds (II). In cases in which the M-N-O angle is close to 180° , the M-N bond is usually relatively short.
- If the backbonding effect is weak, the angle decreases significantly ($< (M-N-O) = \sim 120^\circ$) and the ligand can be described as "NO⁻" as it is observed in the cobalt complexes below
- The Enemark-Feltham notation is used to describe the number of *d-type* electrons present in a given metal nitrosyl complex. Complexes with "d+ π^* -electrons" in excess of six often tend to have bent NO ligands i.e., Co(NO)dtc₂ (7 e, 127°).

Metal Nitrosyl Complexes VI

- Examples

Compound	$(M-N-O)$	$d(M-N)$	$d(N-O)$
$[\text{Fe}(\text{CN})_5(\text{NO})]^{2-}$	173.9°	164.3 pm	114.5 pm
$[\text{Mn}(\text{CN})_5(\text{NO})]^{3-}$	177.0°	165.1 pm	117.4 pm
$[\text{Co}(\text{NH}_3)_5(\text{NO})]^{2+}$	119.0°	187.1 pm	115.4 pm
<i>trans</i> - $[\text{Co}(\text{en})_2(\text{NO})\text{Cl}]^+$	124.4°	182.0 pm	104.3 pm
$[\text{Cr}(\text{CN})_5(\text{NO})]^{3-}$	176.0°	171.0 pm	121.1 pm
$\text{Ir}(\text{NO})(\text{P}(\text{C}_6\text{H}_5)_3)_3$	180.0°	166.6 pm	124.4 pm

- Infrared spectroscopy and EPR spectroscopy can be used to distinguish between different bond modes.
- Linear M-N-O groups (N-O triple bond) absorb in the range 1650–1900 cm^{-1} (i.e., $[\text{Fe}(\text{CN})_5(\text{NO})]^{2-}$: 1939 cm^{-1} , $[\text{Mn}(\text{CN})_5(\text{NO})]^{3-}$: 1700 cm^{-1})
- Bent nitrosyl groups (N-O double bond) absorb in the range 1525–1690 cm^{-1} (i.e., $[\text{Co}(\text{NH}_3)_5(\text{NO})]^{2+}$: 1620 cm^{-1}).

Experiment (Theory)

- In the lab, an iron nitrosyl complex will be synthesized by the reaction of ferrous sulfate with nitrous acid in the presence of a dithiocarbamate ligand.
- The reaction of the nitrite with sulfuric acid generates the nitrous acid (HNO_2) *in-situ*, which is reduced by Fe^{2+} to yield nitric oxide, which reacts with the iron aquo complex to form $[\text{Fe}(\text{H}_2\text{O})_5(\text{NO})]^{2+}$.
- The addition of the dithiocarbamate ion leads to the formation of the dark-green $\text{Fe}(\text{NO})\text{dtc}_2$.
- In the second part, the product of the first reaction is reacted with iodine to yield the brown $\text{FeI}(\text{NO})\text{dtc}_2$.
- The structures of both compounds are investigated using infrared spectroscopy, EPR and NMR spectroscopy.

Experiment I

- **Safety**
 - The first experiment has to be performed under a well-ventilated hood because nitrogen dioxide (NO_2) is formed as a byproduct in this reaction.
 - Chloroform is classified as selected carcinogen and should only be handled in the hood.
 - Petroleum ether is flammable. Keep away from any ignition sources.

Experiment II

- **Bis(diethyldithiocarbamato)nitrosyl iron (Fe(NO)dtc₂)**

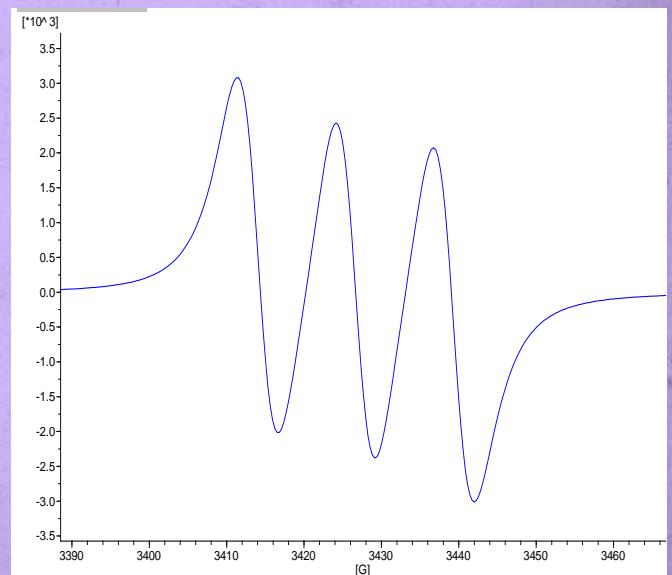
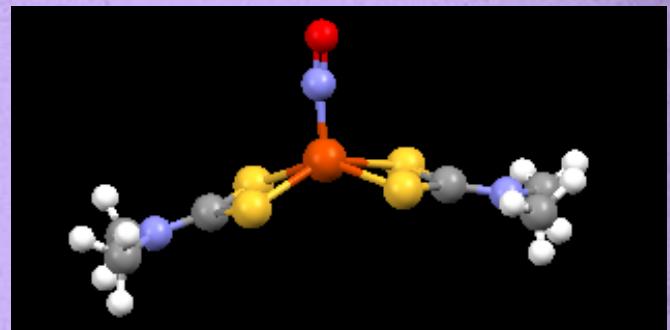
- Ferrous sulfate ($\text{FeSO}_4 \cdot 7 \text{ H}_2\text{O}$) and sodium nitrite (NaNO_2) are dissolved in 0.5 M sulfuric acid (student most likely has to prepare this solution).
- A aqueous solution of of sodium (*N,N*-diethyldithiocarbamate) ($\text{Na}(\text{S}_2\text{CNEt}_2) \cdot 3 \text{ H}_2\text{O}$) is added immediately.
- The dark reaction mixture is stirred vigorously for 5 minutes before being transferred into a separatory funnel (without the spin bar).
- The reaction mixture is extracted several times with chloroform (it could be a difficult to see the phase separation here).
- The combined organic layers are dried over anhydrous magnesium sulfate before the volume of the solution is reduced using the rotary evaporator.
- Petroleum ether is added to the solution to precipitate the dark green solid.
- If the solid does not crystallize at 0 °C, some of the chloroform is removed by careful evaporation using the rotary evaporator (do not use heat here!).
- The crystals are isolated by filtration, are washed with petroleum ether and are dried in vacuum.

Experiment III

- **Bis(diethyldithiocarbamato)(ido)nitrosyl iron**
 - Bis(diethyldithiocarbamato)nitrosyl iron is suspended in absolute ethanol.
 - A solution of iodine in absolute ethanol is added drop wise over a period of 15 minutes.
 - The resulting mixture is stirred for one hour at room temperature during which a brown precipitate forms.
 - The precipitate is removed by filtration, washed with 95% ethanol and dried in vacuum.

Characterization I

- **Infrared spectroscopy**



- $\text{Fe}(\text{NO})\text{dtc}_2$
 - $\nu(\text{NO}) = 1685 \text{ cm}^{-1}$
- $\text{FeI}(\text{NO})\text{dtc}_2$
 - $\nu(\text{NO}) = 1805 \text{ cm}^{-1}$
 - Increased stretching frequency due to reduced π -backbonding due to the higher oxidation state

- **NMR spectroscopy**

- $\text{FeI}(\text{NO})\text{dtc}_2$
 - Complex multiplet at $\delta = 3.63 \text{ ppm}$ (8 lines) and $\delta = 1.24 \text{ ppm}$ (8 lines)

Characterization II

- $\text{Fe}(\text{NO})\text{dtc}_2$
 - The nitrosyl group has an unpaired electron ($\angle(\text{Fe}-\text{N}-\text{O})= 174^\circ$)
 - The electron is located at the nitrogen atom and therefore couples with the nucleus (${}^{14}\text{N}$: 99.638% abundance, $I=1$)
 - A three line spectrum is observed for this compound ($=2*1+1$)

