The structure, optical and electrical properties of transparent conducting oxide films depend greatly on the methods of preparation, heat treatment, type and level of dopant. Thin films of (CdO)1−x(In2O3)x have been grown by electron beam evaporation technique for different concentrations of In2O3 (x=0, 0.05, 0.1, 0.15 and 0.2). Increase of doping led to increased carrier concentration as derived from optical data and hence to increased electrical conductivity, which degraded the transparency of the films. An improvement of the electrical and optical properties of Cadmium indium oxide (CdIn2O4) has been achieved by post-deposition annealing. A resistivity value of 7×10−5 Ω cm and transmittance of 92% in the near infrared region and 82% in the visible region have been obtained after annealing at 300 °C for 90 min in air.