In this paper, we constructed the equations of generalized magneto-thermoelasticity in a perfectly conducting medium. The formulation is applied to generalizations, the Lord–Shulman theory with one relaxation time, and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory. The material of the cylinder is supposed to be nonhomogeneous isotropic both mechanically and thermally. The problem has been solved numerically using a finite element method. Numerical results for the temperature distribution, displacement, radial stress, and hoop stress are represented graphically. The results indicate that the effects of nonhomogeneity, magnetic field, and thermal relaxation times are very pronounced. In the absence of the magnetic field or relaxation times, our results reduce to those of generalized thermoelasticity and/or classical dynamical thermoelasticity, respectively. Results …

